→ Значение двоичного кода – почему компьютеры работают с единицами и нулями. Бинарный код Двоичный код расшифровка на русском

Значение двоичного кода – почему компьютеры работают с единицами и нулями. Бинарный код Двоичный код расшифровка на русском

Поскольку является наиболее простой и соответствует требованиям:

  • Чем меньше значений существует в системе, тем проще изготовить отдельные элементы, оперирующие этими значениями. В частности, две цифры двоичной системы счисления могут быть легко представлены многими физическими явлениями: есть ток - нет тока, индукция магнитного поля больше пороговой величины или нет и т. д.
  • Чем меньше количество состояний у элемента, тем выше помехоустойчивость и тем быстрее он может работать. Например, чтобы закодировать три состояния через величину индукции магнитного поля, потребуется ввести два пороговых значения, что не будет способствовать помехоустойчивости и надёжности хранения информации.
  • Двоичная арифметика является довольно простой. Простыми являются таблицы сложения и умножения - основных действий над числами.
  • Возможно применение аппарата алгебры логики для выполнения побитовых операций над числами.

Ссылки

  • Онлайн калькулятор для перевода чисел из одной системы счисления в другую

Wikimedia Foundation . 2010 .

Смотреть что такое "Бинарный код" в других словарях:

    2 битный код Грея 00 01 11 10 3 битный код Грея 000 001 011 010 110 111 101 100 4 битный код Грея 0000 0001 0011 0010 0110 0111 0101 0100 1100 1101 1111 1110 1010 1011 1001 1000 Код Грея система счисления, в которой два соседних значения… … Википедия

    Код сигнальной точки (англ. Signal Point Code (SPC)) сигнальной системы 7 (SS7, ОКС 7) это уникальный (в домашней сети) адрес узла, используемый на третьем уровне MTP (маршрутизация) в телекоммуникационных ОКС 7 сетях для идентификации … Википедия

    В математике бесквадратным называется число, которое не делится ни на один квадрат, кроме 1. К примеру, 10 бесквадратное, а 18 нет, так как 18 делится на 9 = 32. Начало последовательности бесквадратных чисел таково: 1, 2, 3, 5, 6, 7,… … Википедия

    Для улучшения этой статьи желательно?: Викифицировать статью. Переработать оформление в соответствии с правилами написания статей. Исправить статью согласно стилистическим правилам Википедии … Википедия

    У этого термина существуют и другие значения, см. Python (значения). Python Класс языка: му … Википедия

    В узком смысле слова в настоящее время под словосочетанием понимается «Покушение на систему безопасности», и склоняется скорее к смыслу следующего термина Крэкерская атака. Это произошло из за искажения смысла самого слова «хакер». Хакерская… … Википедия

Одиночный цифровой сигнал не слишком информативен, ведь он может принимать только два значения: нуль и единица. Поэтому в тех случаях, когда необходимо передавать, обрабатывать или хранить большие объемы информации, обычно применяют несколько параллельных цифровых сигналов. При этом все эти сигналы должны рассматриваться только одновременно, каждый из них по отдельности не имеет смысла. В таких случаях говорят о двоичных кодах, то есть о кодах, образованных цифровыми (логическими, двоичными) сигналами. Каждый из логических сигналов, входящих в код, называется разрядом. Чем больше разрядов входит в код, тем больше значений может принимать данный код.

В отличие от привычного для нас десятичного кодирования чисел, то есть кода с основанием десять, при двоичном кодировании в основании кода лежит число два (рис. 2.9). То есть каждая цифра кода (каждый разряд) двоичного кода может принимать не десять значений (как в десятичном коде: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9), а всего лишь два - 0 и 1. Система позиционной записи остается такой же, то есть справа пишется самый младший разряд, а слева - самый старший. Но если в десятичной системе вес каждого следующего разряда больше веса предыдущего в десять раз, то в двоичной системе (при двоичном кодировании) - в два раза. Каждый разряд двоичного кода называется бит (от английского "Binary Digit" - "двоичное число").

Рис. 2.9. Десятичное и двоичное кодирование

В табл. 2.3 показано соответствие первых двадцати чисел в десятичной и двоичной системах.

Из таблицы видно, что требуемое количество разрядов двоичного кода значительно больше, чем требуемое количество разрядов десятичного кода. Максимально возможное число при количестве разрядов, равном трем, составляет при десятичной системе 999, а при двоичной - всего лишь 7 (то есть 111 в двоичном коде). В общем случае n-разрядное двоичное число может принимать 2 n различных значений, а n-разрядное десятичное число - 10 n значений. То есть запись больших двоичных чисел (с количеством разрядов больше десяти) становится не слишком удобной.

Таблица 2.3. Соответствие чисел в десятичной и двоичной системах
Десятичная система Двоичная система Десятичная система Двоичная система

Для того чтобы упростить запись двоичных чисел, была предложена так называемая шестнадцатеричная система (16-ричное кодирование). В этом случае все двоичные разряды разбиваются на группы по четыре разряда (начиная с младшего), а затем уже каждая группа кодируется одним символом. Каждая такая группа называется полубайтом (или нибблом , тетрадой ), а две группы (8 разрядов) - байтом. Из табл. 2.3 видно, что 4-разрядное двоичное число может принимать 16 разных значений (от 0 до 15). Поэтому требуемое число символов для шестнадцатиричного кода тоже равно 16, откуда и происходит название кода. В качестве первых 10 символов берутся цифры от 0 до 9, а затем используются 6 начальных заглавных букв латинского алфавита: A, B, C, D, E, F.

Рис. 2.10. Двоичная и 16-ричная запись числа

В табл. 2.4 приведены примеры 16-ричного кодирования первых 20 чисел (в скобках приведены двоичные числа), а на рис. 2.10 показан пример записи двоичного числа в 16-ричном виде. Для обозначения 16-ричного кодирования иногда применяют букву "h" или "H" (от английского Hexadecimal) в конце числа, например, запись A17F h обозначает 16-ричное число A17F. Здесь А1 представляет собой старший байт числа, а 7F - младший байт числа. Все число (в нашем случае - двухбайтовое) называется словом .

Таблица 2.4. 16-ричная система кодирования
Десятичная система 16-ричная система Десятичная система 16-ричная система
0 (0) A (1010)
1(1) B (1011)
2 (10) C (1100)
3 (11) D (1101)
4 (100) E (1110)
5 (101) F (1111)
6 (110) 10 (10000)
7 (111) 11 (10001)
8 (1000) 12 (10010)
9 (1001) 13 (10011)

Для перевода 16-ричного числа в десятичное необходимо умножить значение младшего (нулевого) разряда на единицу, значение следующего (первого) разряда на 16, второго разряда на 256 (16 2) и т.д., а затем сложить все произведения. Например, возьмем число A17F:

A17F=F*16 0 + 7*16 1 + 1*16 2 + A*16 3 = 15*1 + 7*16+1*256+10*4096=41343

Но каждому специалисту по цифровой аппаратуре (разработчику, оператору, ремонтнику, программисту и т.д.) необходимо научиться так же свободно обращаться с 16-ричной и двоичной системами, как и с обычной десятичной, чтобы никаких переводов из системы в систему не требовалось.

Помимо рассмотренных кодов, существует также и так называемое двоично-десятичное представление чисел. Как и в 16-ричном коде, в двоично-десятичном коде каждому разряду кода соответствует четыре двоичных разряда, однако каждая группа из четырех двоичных разрядов может принимать не шестнадцать, а только десять значений, кодируемых символами 0, 1, 2, 3, 4, 5, 6, 7, 8, 9. То есть одному десятичному разряду соответствует четыре двоичных. В результате получается, что написание чисел в двоично-десятичном коде ничем не отличается от написания в обычном десятичном коде (табл. 2.6), но в реальности это всего лишь специальный двоичный код, каждый разряд которого может принимать только два значения: 0 и 1. Двоично-десятичный код иногда очень удобен для организации десятичных цифровых индикаторов и табло.

Таблица 2.6. Двоично-десятичная система кодирования
Десятичная система Двоично-десятичная система Десятичная система Двоично-десятичная система
0 (0) 10 (1000)
1(1) 11 (1001)
2 (10) 12 (10010)
3 (11) 13 (10011)
4 (100) 14 (10100)
5 (101) 15 (10101)
6 (110) 16 (10110)
7 (111) 17 (10111)
8 (1000) 18 (11000)
9 (1001) 19 (11001)

В двоичном коде над числами можно проделывать любые арифметические операции: сложение, вычитание, умножение, деление.

Рассмотрим, например, сложение двух 4-разрядных двоичных чисел. Пусть надо сложить число 0111 (десятичное 7) и 1011 (десятичное 11). Сложение этих чисел не сложнее, чем в десятичном представлении:

При сложении 0 и 0 получаем 0, при сложении 1 и 0 получаем 1, при сложении 1 и 1 получаем 0 и перенос в следующий разряд 1. Результат - 10010 (десятичное 18). При сложении любых двух n-разрядных двоичных чисел может получиться n-разрядное или (n+1)-разрядное число.

Точно так же производится вычитание. Пусть из числа 10010 (18) надо вычесть число 0111 (7). Записываем числа с выравниванием по младшему разряду и вычитаем точно так же, как в случае десятичной системы:

При вычитании 0 из 0 получаем 0, при вычитании 0 из 1 получаем 1, при вычитании 1 из 1 получаем 0, при вычитании 1 из 0 получаем 1 и заем 1 в следующем разряде. Результат - 1011 (десятичное 11).

При вычитании возможно получение отрицательных чисел, поэтому необходимо использовать двоичное представление отрицательных чисел.

Для одновременного представления как двоичных положительных, так и двоичных отрицательных чисел чаще всего используется так называемый дополнительный код. Отрицательные числа в этом коде выражаются таким числом, которое, будучи сложено с положительным числом такой же величины, даст в результате нуль. Для того чтобы получить отрицательное число, надо поменять все биты такого же положительного числа на противоположные (0 на 1, 1 на 0) и прибавить к результату 1. Например, запишем число –5. Число 5 в двоичном коде выглядит 0101. Заменяем биты на противоположные: 1010 и прибавляем единицу: 1011. Суммируем результат с исходным числом: 1011 + 0101 = 0000 (перенос в пятый разряд игнорируем).

Отрицательные числа в дополнительном коде отличаются от положительных значением старшего разряда: единица в старшем разряде определяет отрицательное число, а нуль - положительное.

Помимо стандартных арифметических операций, в двоичной системе счисления используются и некоторые специфические операции, например, сложение по модулю 2. Эта операция (обозначается A) является побитовой, то есть никаких переносов из разряда в разряд и заемов в старших разрядах здесь не существует. Правила сложения по модулю 2 следующие: , , . Эта же операция называется функцией Исключающее ИЛИ . Например, просуммируем по модулю 2 два двоичных числа 0111 и 1011:

Среди других побитовых операций над двоичными числами можно отметить функцию И и функцию ИЛИ. Функция И дает в результате единицу только тогда, когда в соответствующих битах двух исходных чисел обе единицы, в противном случае результат -0. Функция ИЛИ дает в результате единицу тогда, когда хотя бы один из соответствующих битов исходных чисел равен 1, в противном случае результат 0.


Ариабхата
Кириллическая
Греческая Грузинская
Эфиопская
Еврейская
Акшара-санкхья Другие Вавилонская
Египетская
Этрусская
Римская
Дунайская Аттическая
Кипу
Майяская
Эгейская
Символы КППУ Позиционные , , , , , , , , , , Нега-позиционная Симметричная Смешанные системы Фибоначчиева Непозиционные Единичная (унарная)

Двоичная система счисления - позиционная система счисления с основанием 2. Благодаря непосредственной реализации в цифровых электронных схемах на логических вентилях , двоичная система используется практически во всех современных компьютерах и прочих вычислительных электронных устройствах .

Двоичная запись чисел

В двоичной системе счисления числа записываются с помощью двух символов (0 и 1 ). Чтобы не путать, в какой системе счисления записано число, его снабжают указателем справа внизу. Например, число в десятичной системе 5 10 , в двоичной 101 2 . Иногда двоичное число обозначают префиксом 0b или символом & (амперсанд) , например 0b101 или соответственно &101 .

В двоичной системе счисления (как и в других системах счисления, кроме десятичной) знаки читаются по одному. Например, число 101 2 произносится «один ноль один».

Натуральные числа

Натуральное число, записываемое в двоичной системе счисления как (a n − 1 a n − 2 … a 1 a 0) 2 {\displaystyle (a_{n-1}a_{n-2}\dots a_{1}a_{0})_{2}} , имеет значение:

(a n − 1 a n − 2 … a 1 a 0) 2 = ∑ k = 0 n − 1 a k 2 k , {\displaystyle (a_{n-1}a_{n-2}\dots a_{1}a_{0})_{2}=\sum _{k=0}^{n-1}a_{k}2^{k},}

Отрицательные числа

Отрицательные двоичные числа обозначаются так же как и десятичные: знаком «−» перед числом. А именно, отрицательное целое число, записываемое в двоичной системе счисления (− a n − 1 a n − 2 … a 1 a 0) 2 {\displaystyle (-a_{n-1}a_{n-2}\dots a_{1}a_{0})_{2}} , имеет величину:

(− a n − 1 a n − 2 … a 1 a 0) 2 = − ∑ k = 0 n − 1 a k 2 k . {\displaystyle (-a_{n-1}a_{n-2}\dots a_{1}a_{0})_{2}=-\sum _{k=0}^{n-1}a_{k}2^{k}.}

дополнительном коде .

Дробные числа

Дробное число, записываемое в двоичной системе счисления как (a n − 1 a n − 2 … a 1 a 0 , a − 1 a − 2 … a − (m − 1) a − m) 2 {\displaystyle (a_{n-1}a_{n-2}\dots a_{1}a_{0},a_{-1}a_{-2}\dots a_{-(m-1)}a_{-m})_{2}} , имеет величину:

(a n − 1 a n − 2 … a 1 a 0 , a − 1 a − 2 … a − (m − 1) a − m) 2 = ∑ k = − m n − 1 a k 2 k , {\displaystyle (a_{n-1}a_{n-2}\dots a_{1}a_{0},a_{-1}a_{-2}\dots a_{-(m-1)}a_{-m})_{2}=\sum _{k=-m}^{n-1}a_{k}2^{k},}

Сложение, вычитание и умножение двоичных чисел

Таблица сложения

Пример сложения «столбиком» (десятичное выражение 14 10 + 5 10 = 19 10 в двоичном виде выглядит как 1110 2 + 101 2 = 10011 2):

Пример умножения «столбиком» (десятичное выражение 14 10 * 5 10 = 70 10 в двоичном виде выглядит как 1110 2 * 101 2 = 1000110 2):

Начиная с цифры 1 все цифры умножаются на два. Точка, которая стоит после 1, называется двоичной точкой.

Преобразование двоичных чисел в десятичные

Допустим, дано двоичное число 110001 2 . Для перевода в десятичное запишите его как сумму по разрядам следующим образом:

1 * 2 5 + 1 * 2 4 + 0 * 2 3 + 0 * 2 2 + 0 * 2 1 + 1 * 2 0 = 49

То же самое чуть иначе:

1 * 32 + 1 * 16 + 0 * 8 + 0 * 4 + 0 * 2 + 1 * 1 = 49

Можно записать это в виде таблицы следующим образом:

512 256 128 64 32 16 8 4 2 1
1 1 0 0 0 1
+32 +16 +0 +0 +0 +1

Двигайтесь справа налево. Под каждой двоичной единицей напишите её эквивалент в строчке ниже. Сложите получившиеся десятичные числа. Таким образом, двоичное число 110001 2 равнозначно десятичному 49 10 .

Преобразование дробных двоичных чисел в десятичные

Нужно перевести число 1011010,101 2 в десятичную систему. Запишем это число следующим образом:

1 * 2 6 + 0 * 2 5 + 1 * 2 4 + 1 * 2 3 + 0 * 2 2 + 1 * 2 1 + 0 * 2 0 + 1 * 2 −1 + 0 * 2 −2 + 1 * 2 −3 = 90,625

То же самое чуть иначе:

1 * 64 + 0 * 32 + 1 * 16 + 1 * 8 + 0 * 4 + 1 * 2 + 0 * 1 + 1 * 0,5 + 0 * 0,25 + 1 * 0,125 = 90,625

Или по таблице:

64 32 16 8 4 2 1 0.5 0.25 0.125
1 0 1 1 0 1 0 , 1 0 1
+64 +0 +16 +8 +0 +2 +0 +0.5 +0 +0.125

Преобразование методом Горнера

Для того, чтобы преобразовывать числа из двоичной в десятичную систему данным методом, надо суммировать цифры слева направо, умножая ранее полученный результат на основу системы (в данном случае 2). Методом Горнера обычно переводят из двоичной в десятичную систему. Обратная операция затруднительна, так как требует навыков сложения и умножения в двоичной системе счисления.

Например, двоичное число 1011011 2 переводится в десятичную систему так:

0*2 + 1 = 1
1*2 + 0 = 2
2*2 + 1 = 5
5*2 + 1 = 11
11*2 + 0 = 22
22*2 + 1 = 45
45*2 + 1 = 91

То есть в десятичной системе это число будет записано как 91.

Перевод дробной части чисел методом Горнера

Цифры берутся из числа справа налево и делятся на основу системы счисления (2).

Например 0,1101 2

(0 + 1 )/2 = 0,5
(0,5 + 0 )/2 = 0,25
(0,25 + 1 )/2 = 0,625
(0,625 + 1 )/2 = 0,8125

Ответ: 0,1101 2 = 0,8125 10

Преобразование десятичных чисел в двоичные

Допустим, нам нужно перевести число 19 в двоичное. Вы можете воспользоваться следующей процедурой:

19/2 = 9 с остатком 1
9/2 = 4 c остатком 1
4/2 = 2 без остатка 0
2/2 = 1 без остатка 0
1/2 = 0 с остатком 1

Итак, мы делим каждое частное на 2 и записываем остаток в конец двоичной записи. Продолжаем деление до тех пор, пока в частном не будет 0. Результат записываем справа налево. То есть нижняя цифра (1) будет самой левой и т. д. В результате получаем число 19 в двоичной записи: 10011 .

Преобразование дробных десятичных чисел в двоичные

Если в исходном числе есть целая часть, то она преобразуется отдельно от дробной. Перевод дробного числа из десятичной системы счисления в двоичную осуществляется по следующему алгоритму:

  • Дробь умножается на основание двоичной системы счисления (2);
  • В полученном произведении выделяется целая часть, которая принимается в качестве старшего разряда числа в двоичной системе счисления;
  • Алгоритм завершается, если дробная часть полученного произведения равна нулю или если достигнута требуемая точность вычислений. В противном случае вычисления продолжаются над дробной частью произведения.

Пример: Требуется перевести дробное десятичное число 206,116 в дробное двоичное число.

Перевод целой части дает 206 10 =11001110 2 по ранее описанным алгоритмам. Дробную часть 0,116 умножаем на основание 2, занося целые части произведения в разряды после запятой искомого дробного двоичного числа:

0,116 2 = 0 ,232
0,232 2 = 0 ,464
0,464 2 = 0 ,928
0,928 2 = 1 ,856
0,856 2 = 1 ,712
0,712 2 = 1 ,424
0,424 2 = 0 ,848
0,848 2 = 1 ,696
0,696 2 = 1 ,392
0,392 2 = 0 ,784
и т. д.

Таким образом 0,116 10 ≈ 0,0001110110 2

Получим: 206,116 10 ≈ 11001110,0001110110 2

Применения

В цифровых устройствах

Двоичная система используется в цифровых устройствах , поскольку является наиболее простой и соответствует требованиям:

  • Чем меньше значений существует в системе, тем проще изготовить отдельные элементы, оперирующие этими значениями. В частности, две цифры двоичной системы счисления могут быть легко представлены многими физическими явлениями: есть ток (ток больше пороговой величины) - нет тока (ток меньше пороговой величины), индукция магнитного поля больше пороговой величины или нет (индукция магнитного поля меньше пороговой величины) и т. д.
  • Чем меньше количество состояний у элемента, тем выше помехоустойчивость и тем быстрее он может работать. Например, чтобы закодировать три состояния через величину напряжения, тока или индукции магнитного поля, потребуется ввести два пороговых значения и два компаратора ,

В вычислительной технике широко используется запись отрицательных двоичных чисел в дополнительном коде . Например, число −5 10 может быть записано как −101 2 но в 32-битном компьютере будет храниться как 2 .

В английской системе мер

При указании линейных размеров в дюймах по традиции используют двоичные дроби, а не десятичные, например: 5¾″, 7 15 / 16 ″, 3 11 / 32 ″ и т. д.

Обобщения

Двоичная система счисления является комбинацией двоичной системы кодирования и показательной весовой функции с основанием равным 2. Следует отметить, что число может быть записано в двоичном коде , а система счисления при этом может быть не двоичной, а с другим основанием. Пример: двоично-десятичное кодирование , в котором десятичные цифры записываются в двоичном виде, а система счисления - десятичная.

История

  • Полный набор из 8 триграмм и 64 гексаграмм , аналог 3-битных и 6-битных цифр, был известен в древнем Китае в классических текстах книги Перемен . Порядок гексаграмм в книге Перемен , расположенных в соответствии со значениями соответствующих двоичных цифр (от 0 до 63), и метод их получения был разработан китайским учёным и философом Шао Юн в XI веке . Однако нет доказательств, свидетельствующих о том, что Шао Юн понимал правила двоичной арифметики, располагая двухсимвольные кортежи в лексикографическом порядке .
  • Наборы, представляющие собой комбинации двоичных цифр, использовались африканцами в традиционных гаданиях (таких как Ифа) наряду со средневековой геомантией .
  • В 1854 году английский математик Джордж Буль опубликовал знаковую работу, описывающую алгебраические системы применительно к логике , которая в настоящее время известна как Булева алгебра или алгебра логики . Его логическому исчислению было суждено сыграть важную роль в разработке современных цифровых электронных схем.
  • В 1937 году Клод Шеннон представил к защите кандидатскую диссертацию Символический анализ релейных и переключательных схем в , в которой булева алгебра и двоичная арифметика были использованы применительно к электронным реле и переключателям. На диссертации Шеннона по существу основана вся современная цифровая техника .
  • В ноябре 1937 года Джордж Штибиц , впоследствии работавший в Bell Labs , создал на базе реле компьютер «Model K» (от англ. «K itchen», кухня, где производилась сборка), который выполнял двоичное сложение. В конце 1938 года Bell Labs развернула исследовательскую программу во главе со Штибицом. Созданный под его руководством компьютер, завершённый 8 января 1940 года, умел выполнять операции с комплексными числами . Во время демонстрации на конференции American Mathematical Society в Дартмутском колледже 11 сентября 1940 года Штибиц продемонстрировал возможность посылки команд удалённому калькулятору комплексных чисел по телефонной линии с использованием телетайпа . Это была первая попытка использования удалённой вычислительной машины посредством телефонной линии. Среди участников конференции, бывших свидетелями демонстрации, были Джон фон Нейман , Джон Мокли и Норберт Винер , впоследствии писавшие об этом в своих мемуарах.

См. также

Примечания

  1. Попова Ольга Владимировна. Учебное пособие по информатике (неопр.) .

Если вам интересно узнать, как читать двоичные числа, важно понять, как работают двоичные числа. Двоичная система известна как система нумерации «base 2», что означает наличие двух возможных чисел для каждой цифры; один или ноль. Большие числа записываются путем добавления дополнительных двоичных единиц или нулей.



Понимание двоичных чисел


Знание того, как читать двоичные файлы, не является критичным для использования компьютеров. Но хорошо понять концепцию, чтобы лучше понять, как компьютеры хранят числа в памяти. Он также позволяет понимать такие термины, как 16-битные, 32-битные, 64-битные и измерения памяти, такие как байты (8 бит).



«Чтение» двоичного кода обычно означает перевод двоичного числа в базовое 10 (десятичное) число, с которым люди знакомы. Это преобразование достаточно просто выполнить в своей голове, когда вы поймете, как работает бинарный язык.

Каждая цифра в двоичном числе имеет определенное значение, если цифра не является нулем. После того как вы определили все эти значения, вы просто складываете их вместе, чтобы получить 10-значное десятичное значение двоичного числа. Чтобы увидеть, как это работает, возьмите двоичное число 11001010.


1. Лучший способ прочитать двоичное число - начать с самой правой цифры и двигаться влево. Сила этого первого местоположения равна нулю, то есть значение для этой цифры, если это не ноль, равно двум степеням нуля или единице. В этом случае, поскольку цифра является нулем, значение для этого места будет равно нулю.



2. Затем перейдите к следующей цифре. Если это один, то рассчитайте два в степени одного. Запишите это значение. В этом примере значение равно степени два, равной двум.



3. Продолжайте повторять этот процесс, пока не дойдете до самой левой цифры.



4. Чтобы закончить, все, что вам нужно сделать, это сложить все эти числа вместе, чтобы получить общее десятичное значение двоичного числа: 128 + 64 + 0 + 0 + 8 + 0 + 2 + 0 = 202 .


Заметка : Другой способ увидеть весь этот процесс в форме уравнения заключается в следующем: 1 x 2 7 + 1 x 2 6 + 0 x 2 5 + 0 x 2 4 + 1 x 2 3 + 0 x 2 2 + 1 x 2 1 + 0 х 2 0 = 20 .


Двоичные числа с подписью


Приведенный выше метод работает для базовых двоичных чисел без знака. Однако компьютерам нужен способ представления отрицательных чисел также с помощью двоичного кода.


Из-за этого компьютеры используют двоичные числа со знаком. В системе этого типа самая левая цифра известна как знаковый бит, а остальные цифры известны как биты амплитуды.


Чтение двоичного числа со знаком почти такое же, как и без знака, с одним небольшим отличием.


1. Выполните ту же процедуру, как описано выше для двоичного числа без знака, но остановитесь, как только вы достигнете самого левого бита.



2. Чтобы определить знак, осмотрите крайний левый бит. Если это единица, то число отрицательное. Если это ноль, то число положительное.



3. Теперь выполните те же вычисления, что и раньше, но примените соответствующий знак к числу, указанному крайним левым битом: 64 + 0 + 0 + 8 + 0 + 2 + 0 = -74 .


4. Бинарный метод со знаком позволяет компьютерам представлять числа, которые являются положительными или отрицательными. Однако он потребляет начальный бит, а это означает, что для больших чисел требуется немного больше памяти, чем для двоичных чисел без знака.

Множество символов, с помощью которых записывается текст, называется алфавитом .

Число символов в алфавите – это его мощность .

Формула определения количества информации: N = 2 b ,

где N – мощность алфавита (количество символов),

b – количество бит (информационный вес символа).

В алфавит мощностью 256 символов можно поместить практически все необходимые символы. Такой алфавит называется достаточным.

Т.к. 256 = 2 8 , то вес 1 символа – 8 бит.

Единице измерения 8 бит присвоили название 1 байт:

1 байт = 8 бит.

Двоичный код каждого символа в компьютерном тексте занимает 1 байт памяти.

Каким же образом текстовая информация представлена в памяти компьютера?

Удобство побайтового кодирования символов очевидно, поскольку байт - наименьшая адресуемая часть памяти и, следовательно, процессор может обратиться к каждому символу отдельно, выполняя обработку текста. С другой стороны, 256 символов – это вполне достаточное количество для представления самой разнообразной символьной информации.

Теперь возникает вопрос, какой именно восьмиразрядный двоичный код поставить в соответствие каждому символу.

Понятно, что это дело условное, можно придумать множество способов кодировки.

Все символы компьютерного алфавита пронумерованы от 0 до 255. Каждому номеру соответствует восьмиразрядный двоичный код от 00000000 до 11111111. Этот код просто порядковый номер символа в двоичной системе счисления.

Таблица, в которой всем символам компьютерного алфавита поставлены в соответствие порядковые номера, называется таблицей кодировки.

Для разных типов ЭВМ используются различные таблицы кодировки.

Международным стандартом для ПК стала таблица ASCII (читается аски) (Американский стандартный код для информационного обмена).

Таблица кодов ASCII делится на две части.

Международным стандартом является лишь первая половина таблицы, т.е. символы с номерами от 0 (00000000), до 127 (01111111).

Структура таблицы кодировки ASCII

Порядковый номер

Код

Символ

0 - 31

00000000 - 00011111

Символы с номерами от 0 до 31 принято называть управляющими.
Их функция – управление процессом вывода текста на экран или печать, подача звукового сигнала, разметка текста и т.п.

32 - 127

00100000 - 01111111

Стандартная часть таблицы (английский). Сюда входят строчные и прописные буквы латинского алфавита, десятичные цифры, знаки препинания, всевозможные скобки, коммерческие и другие символы.
Символ 32 - пробел, т.е. пустая позиция в тексте.
Все остальные отражаются определенными знаками.

128 - 255

10000000 - 11111111

Альтернативная часть таблицы (русская).
Вторая половина кодовой таблицы ASCII, называемая кодовой страницей (128 кодов, начиная с 10000000 и кончая 11111111), может иметь различные варианты, каждый вариант имеет свой номер.
Кодовая страница в первую очередь используется для размещения национальных алфавитов, отличных от латинского. В русских национальных кодировках в этой части таблицы размещаются символы русского алфавита.

Первая половина таблицы кодов ASCII


Обращаю ваше внимание на то, что в таблице кодировки буквы (прописные и строчные) располагаются в алфавитном порядке, а цифры упорядочены по возрастанию значений. Такое соблюдение лексикографического порядка в расположении символов называется принципом последовательного кодирования алфавита.

Для букв русского алфавита также соблюдается принцип последовательного кодирования.

Вторая половина таблицы кодов ASCII


К сожалению, в настоящее время существуют пять различных кодировок кириллицы (КОИ8-Р, Windows. MS-DOS, Macintosh и ISO). Из-за этого часто возникают проблемы с переносом русского текста с одного компьютера на другой, из одной программной системы в другую.

Хронологически одним из первых стандартов кодирования русских букв на компьютерах был КОИ8 ("Код обмена информацией, 8-битный"). Эта кодировка применялась еще в 70-ые годы на компьютерах серии ЕС ЭВМ, а с середины 80-х стала использоваться в первых русифицированных версиях операционной системы UNIX.

От начала 90-х годов, времени господства операционной системы MS DOS, остается кодировка CP866 ("CP" означает "Code Page", "кодовая страница").

Компьютеры фирмы Apple, работающие под управлением операционной системы Mac OS, используют свою собственную кодировку Mac.

Кроме того, Международная организация по стандартизации (International Standards Organization, ISO) утвердила в качестве стандарта для русского языка еще одну кодировку под названием ISO 8859-5.

Наиболее распространенной в настоящее время является кодировка Microsoft Windows, обозначаемая сокращением CP1251.

С конца 90-х годов проблема стандартизации символьного кодирования решается введением нового международного стандарта, который называется Unicode . Это 16-разрядная кодировка, т.е. в ней на каждый символ отводится 2 байта памяти. Конечно, при этом объем занимаемой памяти увеличивается в 2 раза. Но зато такая кодовая таблица допускает включение до 65536 символов. Полная спецификация стандарта Unicode включает в себя все существующие, вымершие и искусственно созданные алфавиты мира, а также множество математических, музыкальных, химических и прочих символов.

Попробуем с помощью таблицы ASCII представить, как будут выглядеть слова в памяти компьютера.

Внутреннее представление слов в памяти компьютера

Иногда бывает так, что текст, состоящий из букв русского алфавита, полученный с другого компьютера, невозможно прочитать - на экране монитора видна какая-то "абракадабра". Это происходит оттого, что на компьютерах применяется разная кодировка символов русского языка.

 

 

Это интересно: