→ Что такое рендеринг в программировании. Что такое рендеринг

Что такое рендеринг в программировании. Что такое рендеринг

Происхождение термина Слово «рендер» (или «рендеринг») пришло, как и многое, связанное с IP-технологиями, из английского языка. Происходит оно от старофранцузского rendre, означающего «делать», «дать», «возвратить», «вернуть». Более глубокие корни этого глагола восходят к древней латыни: re – префикс, означающий «назад», и dare – «давать». Отсюда – один из смыслов современного термина. Рендер – это в том числе процесс воссоздания плоскостного изображения на основе трехмерной модели, содержащей сведения о физических свойствах объекта – его форме, фактуре поверхности, освещенности и так далее.

Рендеринг (англ. rendering - «визуализация») в компьютерной графике - процесс получения изображения по модели с помощью компьютерной программы.

Здесь модель - это описание любых объектов или явлений на строго определённом языке или в виде структуры данных. Такое описание может содержать геометрические данные, положение точки наблюдателя, информацию об освещении, степени наличия какого-то вещества, напряжённость физического поля и пр.

Примером визуализации могут служить радарные космические снимки, представляющие в виде изображения данные, полученные посредством радиолокационного сканирования поверхности космического тела, в диапазоне электро-магнитных волн, невидимых человеческим глазом.

Часто в компьютерной графике (художественной и технической) под рендерингом понимают создание плоского изображения (картинки) по разработанной 3D-сцене. Изображение - это цифровое растровое изображение. Синонимом в данном контексте является Визуализация.

Визуализация - один из наиболее важных разделов в компьютерной графике, и на практике он тесным образом связан с остальными. Обычно, программные пакеты трехмерного моделирования и анимации включают в себя также и функцию рендеринга. Существуют отдельные программные продукты, выполняющие рендеринг.

В зависимости от цели, различают пре-рендеринг, как достаточно медленный процесс визуализации, применяющийся в основном при создании видео, и рендеринг в реальном режиме, применяемый в компьютерных играх. Последний часто использует 3D-ускорители.

Особенности рендеринга

На доведение предварительного эскиза до совершенства понадобится много времени – продолжительность обработки сложных изображений компьютером может достигать нескольких часов. За этот период происходит:

  • раскраска
  • детализация мелких элементов
  • проработка световых эффектов – отражения потоков, теней и прочих
  • отображение климатических условий
  • реализация иных деталей, позволяющих повысить реалистичность.

Сложность обработки влияет на формирование цены 3d-визуализации, чем больше потребуется времени, тем дороже обойдется работа над проектом. По возможности моделлеры упрощают процесс рендеринга, к примеру, просчитывают отдельные моменты или используют другие инструменты, позволяющие сократить время визуализации без ухудшения ее качества

Кто занимается рендерингом?

Самая распространенная профессия требующая от вас знания рендеринга это «3D дизайнер». Специалист такого рода может создавать все: от элементарного банера до моделей компьютерных игр.

И, конечно же, 3D дизайнер занимается не только рендерингом, но и всеми предшествующими этапами создания 3D графики, а именно: моделирование, текстурирование, освещение, анимация и только после – визуализация.

Однако, 3D дизайнер не работает с математическими и физическими формулами, описывая их языками программирования. Все это за него делают программы компиляторы (3D Max, Maya, Cinema 4D, Zbrush, Blender и т.д.) и уже написанных библиотек физических свойств (ODE, Newton, PhysX, Bullet и т.п.).

Отдельно среди перечисленных выше программ, позволяющих создавать 3D графику нужно выделить бесплатную программу OGRE 3D – графические движки специально для рендеринга, с помощью которого можно не только создавать «картинки», но и реализовать целую, а главное полноценную компьютерную игру. К примеру «Torchlight» в качестве игрового движка использует именно OGRE.

Ну, а для обработки такого количества и качества графических сцен настольного компьютера будет не достаточно, поэтому в последнее время для рендеринга делают не только программы но и сервисы для обработки их процессов, такие как «рендер ферма». И стоит заметить, что удовольствие это не из дешевых, не смотря на низкие цены рендер фермы цена рендеринга получается довольно внушительной – 3,9 центов / ГГц-час.

Типы рендера: online и пререндеринг

Различают два основных типа рендера в зависимости от скорости, с которой должно происходить получение готового изображения. Первый – рендеринг в реальном времени, необходимый в интерактивной графике, в основном в компьютерных играх. Здесь нужен быстрый рендер, изображение должно выводиться на экран мгновенно, поэтому многое в сцене рассчитывается заранее и сохраняется в ней в виде отдельных данных. К ним относятся текстуры, определяющие внешний вид объектов и освещение.

Программы, используемые для онлайн-рендера, используют в основном ресурсы графической карты и оперативной памяти компьютера и в меньшей степени – процессора. Для рендера сцен, более сложных визуально, а также там, где вопрос скорости не так актуален, когда гораздо важнее качество рендера, используются другие методы и программы для рендеринга. В этом случае используется вся мощь многоядерных процессоров, выставляются самые высокие параметры разрешения текстур, обсчета освещения. Часто применяется и постобработка рендера, позволяющая добиться высокой степени фотореалистичности или нужного художественного эффекта. Методы просчета сцены Выбор способов получения изображения зависит от конкретной задачи и часто от личных предпочтений и опыта визуализатора.

Разрабатываются всё новые системы рендера – или узкоспециализированные, или универсальные. Сегодня в основе самых распространенных программ-рендеров лежат три основных вычислительных метода: Растеризация (Scanline) – метод, при котором изображение создается просчетом не отдельных точек-пикселей, а целых граней-полигонов и крупных участков поверхностей. Текстуры, определяющие свойства объектов, как и свет в сцене, зафиксированы в виде неизменных данных. Получаемое изображение часто не отражает перспективных изменений освещенности, глубины резкости и т. д. Чаще применяется в системах для просчета сцен в играх и в видеопродакшене. Трассировка лучей (Raytracing) – физика сцены просчитывается на основе лучей, исходящих из объектива виртуальной камеры и анализа взаимодействия каждого луча с объектами, с которыми он встречается в сцене. В зависимости от количества и качества таких «отскоков» имитируется отражение или преломление света, его цвет, насыщенность и т. д. Качество получаемой картинки по сравнению с растеризацией значительно выше, но за её реалистичность приходится платить повышенным расходом ресурсов. Расчет отраженного света (Radiosity) – каждая точка, каждый пиксель изображения наделяется цветом, который не зависит от камеры. На него влияют глобальные и местные источники света и окружение. Такой метод позволяет рассчитать появление на поверхности модели цветовых и световых рефлексов от рядом расположенных объектов. Практика показывает, что самые продвинутые и популярные системы рендера использует сочетание всех или основных методов. Это позволяет добиться максимального фотореализма и достоверности в отображении физических процессов в данной сцене.

Научитесь рендерить быстрей и эффективней с помощью советов от мастеров своего дела!

Кому-то процесс рендеринга может показаться скучным и неинтересным по сравнению с другими этапами работы с 3D, но от этого он не становится менее важным. Сегодня огромное значение имеет скорость и качество работы исполнителя, при этом время не должно тратиться впустую. Отрендеренные кадры или секвенции всегда можно перерендерить на свежую голову, но от этого вы не потратите меньше времени на них. Поэтому необходимо понимать, что вы работаете правильно.

«Normal-пас добавит отрендеренной картинке еще больше света. Каждый канал можно использовать как дополнительный источник света», — Carlos Ortega Elizalde.

Совет №1: Рендерьте все по пасам

«Иногда нужно «подтянуть» уже отрендеренную картинку. Поэтому я рендерю по отдельности все элементы (фон, передний план, персонаж и пр.), и затем свожу все вместе в Photoshop. Далее я тонирую изображение с помощью корректирующих слоев, таких как selective color, hue/saturation и levels. Также при необходимости я использую виньетирование и размытие. И держусь подальше от ползунка chromatic aberration, который в последнее время используется слишком часто и не к месту», — Andrew Hickinbottom .

Работа со слоями помогает взглянуть на работу по-новому

Совет №2: Normal-пасы

«Normal-пас добавит отрендеренной картинке еще больше света. Каждый канал можно использовать как дополнительный источник света. И, хотя, это не физически корректный свет, такой подход помогает подчеркнуть важные детали и вытянуть пересвеченные или засвеченные участки изображения, имитируя rim- или bounce-светильники. Это экономит массу времени и усилий. Такой подход можно также использовать для отрендеренных анимационных секвенций в программах для композитинга», — Carlos Ortega Elizalde .

Советы, помогающие сэкономить время, очень важны

Каждая деталь, добавленная в процессе моделирования, текстурирования или освещения, сыграет на руку рендеру Carlos Ortega Elizalde

Совет №3: Не ленитесь создавать specular-пас…

«Для того, чтобы отрендерить specular-пас в Keyshot, я использую материал wax с translucency 0 и максимально выкрученной specularity, для SColor и Subsurface Color я использую черный цвет. Задний фон я также делаю черным, для освещения сцены использую HDRI Urban», — Luca Nemolato .

Пасы Keyshot используются для еще большего улучшения картинки

Совет №3: … и пас кожи

«Для того чтобы получить хороший пас кожи в Keyshot, я использую метариал Human Skin с translucency 0.7 (значение translucency также зависит от модели), roughness 0.8, затем я загружаю Texture-карту и Normal-карту. Сцену я обычно освещаю с помощью HDRI Factory», — Luca Nemolato.

Кожа стоит потраченного на нее времени, поэтому экспериментируйте, пока не получите удовлетворительный результат

Совет №4: Рендерьте только важные эелементы

«Обычно разрешение у иллюстраций для печати должно быть достаточно высоким, поэтому для финального рендера я использую разрешение в 6-8k. Для такого рендера нужны текстуры с очень высоким разрешением, что значительно замедляет работу Maya и Hypershade. Текстуры с таким разрешением нужны только для финального рендера, поэтому для тестовых рендеров я изменяю размер текстур, поскольку для работы со светом и материалами мне не нужно высокое разрешение», — Alex Alvarez .

Текстуры для этой сцены весят несколько ГБ. После уменьшения размера текстур время тестового рендера во время настройки света сократилось на 75%

Совет №5: Сначала все тестируйте

«Перед тем, как переходить к финальному рендеру, делайте несколько тестовых с низким разрешением, также проверьте, что все настройки корректны, освещение выставлено правильно, на картинке не появляются непонятные пятна или засветы. Например, для начала я рендерю с разрешением 800 х 800, которое затем увеличиваю до 1800 х1800, для финального рендера я использую разрешение 5000 х 5000, также отдельно рендерю пасы, важные на этапе поста. Картинку я сохраняю в формате HDR, поскольку хочу иметь возможность отредактировать и настроить экспозицию», — Sérgio Merêces .

Быстрый тест спасет вас от многих часов ожидания

Совет №6: Цветокоррекция

«Рендеры в формате RAW обычно выглядят не лучшим образом, но все меняется, если у вас есть возможность подредактировать картинку в Photoshop, Fusion или NUKE. При этом для важных элементов изображения можно провести цветокоррекцию, расфокусировать их, добавить шума или, наоборот, фокуса, резкости, наименее важные части изображения можно сделать более темными», — Toni Bratincevic .

Затемнение, осветление или тонирование изображения для получения лучшего результата

Вернитесь назад к концепту, если вы недовольны рендером. Как говорит Toni Bratincevic: «Если референс по факту является хорошо проработанным концептом с корректной композицией, получение качественного рендера превращается в вопрос времени и технических скиллов, с помощью которых вы будете моделировать, текстурировать и освещать сцену».

Совет №7: Используйте пасы

«Используйте рендер-пасы для всего блестящего, светящегося или прозрачного. Отдельно рендерьте задний фон, передний план и пр., что позволит более гибко работать с картинкой на композе. Прячьте все, что хоть как-то не относится к рендеру, т.е. отключайте у таких элементов тени и их участие в GI, не используйте отражения для небольших объектов. Для всего, достаточно далекого от камеры, используйте matte painting», — Francesco Giroldini .

Различные пасы добавляют картинке выразительности

Совет №8: Используйте ID matte

"ID matte - дешевый и сердитый способ изменить картинку после рендера. Назначьте элементам в сцене самый обычный красный или голубой цвета, отрендерьте их с той же камеры как beauty-пас, это поможет более эффективно работать с элементами на композе», — Francesco Giroldini.

Никогда не поздно что-то исправить

Рендерьте только то, что действительно нужноFrancesco Giroldini

Совет №9: Постарайтесь увидеть всю картинку

«Финальный рендер составляет 90% от картинки, остальные 10% приходятся на пост, что решит, будет ли ваша картинка более CGI или фотореалистичной. В свободное время изучите минусы рендерера, которым вы пользуетесь, и возможности получения с помощью него более реалистичной картинки. Такие элементы как блики, световой ореол, свечение, зерно и контраст добавляются уже на посте. Такие инструменты как Magic Bullet Looks легки в использовании и позволяют работать в режиме реального времени, что делает процесс имитации какого-либо эффекта более быстрым по сравнению с рендерером», — Alex Alvarez.

Различные варианты изображения, полученные с помощью Photoshop и Magic Bullet

Так выглядел финальный рендер работы «Meadow» в mental ray, который Alex Alvarez затем обработал Alex Alvarez

Эти текстуры Alex Alvarez исключил из финального рендера Alex Alvarez

Совет №10: Рендеру время, потехе час

При условии корректно выполненной работы вы будете несказанно рады финальному рендеру, а законченному продукту обрадуетесь еще больше. А если нет, то задумайтесь о следующем проекте. В следующий раз вы будете еще более искусно моделить, текстуры будут невесомы, свет ослепительным, а рендер идеальным. В следующий раз у вас получится воссоздать картинку из головы. А если нет? Что ж, попробуйте еще раз, а потом еще раз, и еще раз.

«Используйте рендер-пасы для всего блестящего, светящегося или прозрачного» Francesco Giroldini

Рендеринг (англ. rendering - «визуализация») в компьютерной графике - процесс получения изображения по модели при помощи компьютерной программки.

Тут модель - это описание каких угодно объектов либо явлений на строго определённом языке либо в виде структуры данных. Такое описание может содержать геометрические данные, положение точки наблюдающего, информацию об освещении, степени наличия какого-то вещества, напряжённость физического поля и пр.

Примером визуализации могут служить радарные галлактические снимки, представляющие в виде изображения данные, приобретенные средством радиолокационного сканирования поверхности галлактического тела, в спектре электро-магнитных волн, невидимых человечьим глазом.

Нередко в компьютерной графике (художественной и технической) под рендерингом понимают создание плоского изображения (рисунки) по разработанной 3D-сцене. Изображение - это цифровое растровое изображение. Синонимом в данном контексте является Визуализация.

Визуализация - один из более принципиальных разделов в компьютерной графике, и на практике он тесноватым образом связан с остальными. Обычно, программные пакеты трехмерного моделирования и анимации содержат в себе также и функцию рендеринга. Есть отдельные программные продукты, выполняющие рендеринг.

Зависимо от цели, различают пре-рендеринг, как довольно неспешный процесс визуализации, применяющийся в главном при разработке видео, и рендеринг в реальном режиме, используемый в компьютерных играх. Последний нередко употребляет 3D-ускорители.

Способы рендеринга (визуализации)

На текущий момент создано огромное количество алгоритмов визуализации. Имеющееся программное обеспечение может применять немного алгоритмов для получения конечного изображения.

Трассирование каждого луча света в сцене непрактично и занимает неприемлемо продолжительные периоды времени. Даже трассирование малого количества лучей, достаточного, чтоб получить изображение, занимает чрезмерное количество времени, в том случае не применяется аппроксимация (семплирование).

Вследствие этого, было создано четыре группы способов , более действенных, чем моделирование всех лучей света, освещающих сцену:

Растеризация (англ. rasterization) и способ сканирования строк (англ. scanline rendering). Визуализация делается проецированием объектов сцены на экран в отсутствие рассмотрения эффекта перспективы относительно наблюдающего.

Способ бросания лучей (англ. ray casting). Сцена рассматривается, как наблюдаемая из определённой точки. Из точки наблюдения на объекты сцены направляются лучи, при помощи которых определяется цвет пикселя на двумерном экране. При всем этом лучи прекращают своё распространение (в отличие от способа оборотного трассирования), когда добиваются хоть какого объекта сцены или её фона. Может быть употребляются какие-то очень обыкновенные техники прибавления оптических эффектов либо внесения эффекта перспективы.

Глобальная иллюминация (англ. global illumination, radiosity). Употребляет арифметику конечных частей, чтоб симулировать диффузное распространение света от поверхностей и при всем этом достигать эффектов «мягкости» освещения.

Трассировка лучей (англ. ray tracing) похожа на способ бросания лучей. Из точки наблюдения на объекты сцены направляются лучи, при помощи которых определяется цвет пикселя на двумерном экране. Однако при всем этом луч не прекращает своё распространение, а делится на три составляющие, луча, любой из которых заносит собственный вклад в цвет пикселя на двумерном экране: отражённый, теневой и преломленный. Количество подобных разделений на составляющие определяет глубину трассирования и оказывает влияние на качество и фотореалистичность изображения. Благодаря своим концептуальным особенностям, способ позволяет получить очень фотореалистичные изображения, однако при всем этом он очень ресурсоёмкий и процесс визуализации занимает значимые периоды времени.

Передовое программное обеспечение обычно совмещает внутри себя немного техник, чтоб получить довольно высококачественное и фотореалистичное изображение за применимые издержки вычислительных ресурсов.

Выбор редакции

Что такое рендеринг (rendering), и какие особенности имеет этот процесс

Компьютерная графика – важная часть почти любой сферы и окружения, с которыми взаимодействует человек.

Все объекты городской среды, дизайн помещений, предметов обихода, и на стадии их проектирования и внедрения выполнялись в виде объемной компьютерной модели, которую рисуют в специальных программах художники.

Рисование модели происходит в несколько этапов, одним из заключительных из них является рендеринг – что это такое и как он осуществляется, рассказано в данном материале.

Определение

Рендеринг (или как его еще называют, рендер) – один из заключительных процессов в обработке и отрисовке определенной объемной трехмерной компьютерной модели.

Технически он представляет из себя процесс «склеивания» или сопоставления, создания трехмерного изображения из некоторого количества изображений двухмерных. В зависимости от качественности или детализированности, двух мерных изображений может быть как всего несколько, так и очень много.

Также иногда на этом этапе в процессе «сбора» модели могут применяться и некоторые трехмерные элементы.

Процесс этот достаточно сложный и длительный. Он основывается на различных подсчетах, выполняемых как компьютером , так и самим художником (в меньшей степени).

Важно! Программы, которые позволяют осуществлять его, предназначены для работы с трехмерной графикой, а значит, они достаточно мощные и требуют значительных аппаратных ресурсов, и значительного объема оперативной памяти.

Они оказывают значительную нагрузку на «железо» компьютера.

Сфера применения

В каких же сферах применимо данное понятие и необходимо проведение такого процесса?

Этот процесс необходим во всех сферах, в которых задействуется составление объемных трехмерных моделей, и вообще компьютерная графика, а это почти все сферы жизни, с которыми может взаимодействовать современный человек.

Компьютерное проектирование применяется в:

  • Проектировании зданий и сооружений;
  • Ландшафтной архитектуре;
  • Проектировании городской среды;
  • Дизайне помещений;
  • Почти каждая произведенная материальная вещь когда-то была компьютерной моделью;
  • Видеоиграх;
  • Производстве кинофильмов и др.

При этом, данный процесс, по своей сути, является завершающим.

Он может быть последним или предпоследним при проектировании модели.

Отметим, что рендерингом часто называют и не сам процесс составления модели, а его результат – готовую компьютерную трехмерную модель.

Технология

Данную процедуру можно назвать одной из самых сложных при работе с трехмерными изображениями и объектами в компьютерной графике.

Этот этап сопровождается сложными техническими вычислениями, которые выполняет движок программы – математические данные о сцене и объекте на этом этапе переводятся в окончательное двухмерное изображение.

То есть, цветовые, световые и иные данные о трехмерной модели попиксельно перерабатываются таким образом, что бы она могла быть отображена как двухмерная картинка на экране компьютера.

То есть, с помощью ряда вычислений система определяет, как именно должен быть окрашен каждый пиксель каждого двухмерного изображения для того, что в результате, на экране компьютера пользователя, это выглядело как трехмерная модель.

Виды

В зависимости от особенностей технологии и работы выделяются два основных типа такого процесса – это рендеринг в реальном времени и предварительный.

В реальном времени

Такой типа имеет широкое распространение, преимущественно, в компьютерных играх.

В условиях игры изображение должно максимально быстро просчитываться и выстраиваться, например, при движении пользователя на локации.

И хотя это не происходит «с нуля» и имеются некоторые изначальные объемные заготовки, все равно, именно из-за этой особенности компьютерные игры такого типа оказывают очень большую нагрузку на аппаратную часть компьютера.

При сбое в таком случае может происходить изменение и искажение картинки, могут появляться непрогрузившиеся пиксели, при выполнении пользователем (персонажем) каких-либо действий, картинка фактически может не меняться полностью или частично.

В режиме реального времени такой движок в играх работает потому, что предугадать характер действий, направление движения игрока и т. д. невозможно (хотя есть проработанные наиболее вероятные сценарии).

По этой причине движку приходится обрабатывать картинку со скорость 25 кадров в секунду , так как уже при снижении скорости до 20 кадров в секунду, пользователь будет ощущать дискомфорт, так как картинка станет дергаться и тормозить.

При всем этом очень важную роль играет процесс оптимизации, то есть те меры, которые разработчики предпринимают для снижения нагрузки на движок и повышение его производительности во время игры.

По этой причине для плавного рендеринга необходимы, в первую очередь, карта текстур и некоторые допустимые упрощения графики.

Такие меры помогают снизить нагрузку как на движок, так и на аппаратную часть компьютера , что в итоге приводит к тому, что игра легче запускается, проще и быстрее работает.

Именно от качества оптимизации движка рендера во многом зависит то, насколько стабильно работает игра, и насколько реалистично смотрится все происходящее.

Предварительный

Такой тип используется в ситуациях, когда интерактивность не важна.

Например, именно такой тип широко используется в киноиндустрии, при проектировке любой модели ограниченного функционала, например, предназначенной только для того, чтобы ее осматривать с помощью ПК.

То есть, это более упрощенный подход, который возможен также, например, в дизайне – то есть в ситуациях, когда действия пользователя не нужно угадывать, так как они ограничены и просчитаны заранее (и с учетом этого рендеринг может быть выполнен заранее).

Нагрузка в таком случае при просмотре модели приходится не на движок программы, а на центральный процессор ПК. При этом качество и скорость построения картинки зависят от количества ядер, состояния компьютера, производительности его и ЦП.

В продолжении ликбеза по компьютерной графике как для программистов, так и для художников хочу поговорить о том что такое рендеринг . Вопрос не так сложен как кажется, под катом подробное и доступное объяснение!

Я начал писать статьи, которые являются ликбезом для разработчика игр. И поторопился, написав статью про , не рассказав что же такое рендеринг. Поэтому эта статья будет приквелом к введению в шейдеры и отправным пунктом в нашем ликбезе.

Что такое рендеринг? (для программистов)

Итак, Википедия дает такое определение: Ре́ндеринг (англ. rendering - «визуализация») - термин в компьютерной графике, обозначающий процесс получения изображения по модели с помощью компьютерной программы.

Довольно неплохое определение, продолжим с ним. Рендеринг — это визуализация. В компьютерной графике и 3д-художники и программисты под рендерингом понимают создание плоской картинки - цифрового растрового изображения из 3д сцены.
То есть, неформальный ответ на наш вопрос «Что такое рендеринг?» — это получение 2д картинки (на экране или в файле не важно). А компьютерная программа, производящая рендеринг, называется рендером (англ. render) или рендерером (англ. renderer).

Рендер

В свою очередь словом «рендер» называют чаще всего результат рендеринга. Но иногда и процесс называют так же (просто в английском глагол — render перенесся в русский, он короче и удобнее). Вы, наверняка, встречали различные картинки в интернете, с подписью «Угадай рендер или фото?». Имеется ввиду это 3D-визуализация или реальная фотография (уж настолько компьютерная графика продвинулась, что порой и не разберешься).

Виды рендеринга

В зависимости от возможности сделать вычисления параллельными существуют:

  • многопоточный рендеринг — вычисления выполняются параллельно в несколько потоков, на нескольких ядрах процессора,
  • однопоточный рендеринг — в этом случае вычисления выполняются в одном потоке синхронно.

Существует много алгоритмов рендеринга, но все их можно разделить на две группы по принципу получения изображения: растеризация 3д моделей и трасировка лучей. Оба способа используются в видеоиграх. Но трасировка лучей чаще используется не для получения изображений в режиме реального времени, а для подготовки так называемых лайтмапов — световых карт, которые предрасчитываются во время разработки, а после результаты предрасчета используются во время выполнения.

В чем суть методов? Как работает растеризация и трасировка лучей? Начнем с растеризация.

Растеризация полигональной модели

Сцена состоит из моделей, расположенных на ней. В свою очередь каждая модель состоит из примитивов.
Это могут быть точки, отрезки, треугольники и некоторые другие примитивы, такие как квады например. Но если мы рендерим не точки и не отрезки, любые примитивы превращаются в треугольники.

Задача растеризатора (программа, которая выполняет растеризацию) получить из этих примитивов пиксели результирующего изображения. Растеризация в разрезе графического пайплайна, происходит после вершинного шейдера и до фрагментного ().

*возможно следующей статьёй будет обещанный мной разбор графического пайплайна, напишите в комментариях нужен ли такой разбор, мне будет приятно и полезно узнать скольким людям интересно это всё. Я сделал отдельную страничку где есть список разобранных тем и будущих —

В случае с отрезком нужно получить пиксели линии соединяющей две точки, в случае с треугольником пиксели которые внутри него. Для первой задачи применяется алгоритм Брезенхема, для второй может применяться алгоритм заметания прямыми или проверки барицентрических координат.

Сложная модель персонажа состоит из мельчайших треугольников и растеризатор генерирует из неё вполне достоверную картинку. Почему тогда заморачиваться с трассировкой лучей? Почему не растеризовать и все? А смысл вот в чем, растеризатор знает только своё рутинное дело, треугольники — в пиксели. Он ничего не знает об объектах рядом с треугольником.

А это значит что все физические процессы которые происходят в реальном мире он учесть не в состоянии. Эти процессы прямым образом влияют на изображение. Отражения, рефлексы, тени, подповерхностное рассеивание и так далее! Все без чего мы будем видеть просто пластмассовые модельки в вакууме…
А игроки хотят графоний! Игрокам нужен фотореализм!

И приходится графическим программистам изобретать различные техники, чтобы достичь близости к фотореализму. Для этого шейдерные программы используют текстуры, в которых предрассчитаны разные данные света, отражения, теней и подповерхностного рассеивания.

В свою очередь трассировка лучей позволяет рассчитать эти данные, но ценой большего времени рассчета, которое не может быть произведено во время выполнения. Рассмотрим, что из себя представляет этот метод.

Трасировка лучей (англ. ray tracing )

Помните о корпускулярно волновом дуализме? Напомню в чем суть: свет ведёт себя и как волны и как поток частиц — фотонов. Так вот трассировка (от англ «trace» прослеживать путь), это симуляция лучей света, грубо говоря. Но трассирование каждого луча света в сцене непрактично и занимает неприемлемо долгое время.

Мы ограничимся относительно малым количеством, и будем трассировать лучи по нужным нам направлениям.
А какие направления нам нужны? Нам надо определять какие цвета будут иметь пиксели в результирующей картинке. Тоесть количество лучей мы знаем, оно равно количеству пикселей в изображении.

Что с направлением? Все просто, мы будем трассировать лучи в соответствии с точкой наблюдения (то как наша виртуальная камера направлена). Луч встретится в какой-то точке с объектом сцены (если не встретится, значит там темный пиксель или пиксель неба из скайбокса, например).

При встрече с объектом луч не прекращает своё распространение, а разделяется на три луча-компонента, каждый из которых вносит свой вклад в цвет пикселя на двумерном экране: отражённый, теневой и преломлённый. Количество таких компонентов определяет глубину трассировки и влияет на качество и фотореалистичность изображения. Благодаря своим концептуальным особенностям, метод позволяет получить очень фотореалистичные изображения, однако из-за большой ресурсоёмкости процесс визуализации занимает значительное время.

Рендеринг для художников

Но рендеринг это не только программная визуализация! Хитрые художники тоже используют его. Так что такое рендеринг с точки зрения художника? Примерно то же самое, что и для программистов, только концепт-художники выполняют его сами. Руками. Точно так же как рендерер в видео-игре или V-ray в Maya художники учитывают освещение, подповерхностное рассеивание, туман и др. факторы, влияющие на конечный цвет поверхности.

К примеру картинка выше, поэтапно прорабатывается таким образом: Грубый скетч — Лайн — Цвет — Объем — Рендер материалов.

Рендер материалов включает в себя текстурирование, проработку бликов — металлы, например, чаще всего очень гладкие поверхности, которые имеют четкие блики на гранях. Помимо всего этого художники сталкиваются с растеризацией векторной графики, это примерно то же самое, что и растеризация 3д-модели.

Растеризация векторной графики

Суть примерно такая же, есть данные 2д кривых, это те контуры, которыми заданы объекты. У нас есть конечное растровое изображение и растеризатор переводит данные кривых в пиксели. После этого у нас нет возможности масштабировать картинку без потери качества.

Читайте дальше

  • — простое объяснение сложных и страшных шейдеров
  • — Полезный обзор частиц и подборка видео-уроков, по созданию спецэффектов в Unity3d

Послесловие

В этой статье, я надеюсь, вы осили столько букв, вы получили представление о том, что такое рендеринг, какие виды рендеринга существуют. Если какие-то вопросы остались — смело задавайте их в комментариях, я обязательно отвечу. Буду благодарен за уточнения и указания на какие-то неточности и ошибки.

 

 

Это интересно: